skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Weiran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The empirical parameters of mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), atomic radius difference (δ), valence electron concentration (VEC), etc., are used in this study to design a depleted uranium high-entropy alloy (HEA). X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to assess the phase composition. Compression and hardness tests were conducted to select alloy constituents with outstanding mechanical properties. Based on the experimental results, the empirical criteria of HEAs are an effective means to develop depleted uranium high-entropy alloys (DUHEAs). Finally, we created UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 HEAs with outstanding all-round characteristics. Both alloys were composed of a single BCC structure. The hardness and strength of UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 were 305 HB and 1452 MPa, and 297 HB and 1157 MPa, respectively. 
    more » « less
  2. The microstructure, Vickers hardness, and compressive properties of novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys (HEAs) were studied. The alloys were fabricated by vacuum-arc melting and the characteristics of these alloys were explored. The microstructures of all the alloys exhibited a typical morphology of dendritic and eutectic structures. The VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys are essentially single phase, consisting of a disordered body-centered-cubic (BCC) phase, whereas the VCrFeTa0.2W0.2 alloy contains fine, nanoscale precipitates distributed in the BCC matrix. The lattice parameters and compositions of the identified phases were investigated. The alloys have Vickers hardness values ranging from 546 HV0.2 to 1135 HV0.2 with the x ranging from 0.1 to 1, respectively. The VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys exhibit compressive yield strengths of 1341 MPa and 1742 MPa, with compressive plastic strains of 42.2% and 35.7%, respectively. VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys have excellent hardness after annealing for 25 h at 600–1000 °C, and presented compressive yield strength exceeding 1000 MPa with excellent heat-softening resistance at 600–800 °C. By applying the HEA criteria, Ta and W additions into the VCrFeTaW are proposed as a family of candidate materials for fusion reactors and high-temperature structural applications. 
    more » « less